Bartons Primary School MATHS MASTERY

-- -- Calculation and Progression Policy

Bartons Primary School

Progression in the use of manipulatives to support learning

Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects						
0-9 digit cards						
Number track to 10	Number line to 20	Number line to 100	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
Numbered counting stick	Counting stick					
Tens frame		Tens frame 				
	Place value charts Tens and ones	Place value charts Hundreds, tens and ones	Place value charts Thousands, hundreds, tens and ones	Place value charts Ten thousands, thousands, hundreds, tens, ones and tenths	Place value charts to a million and three decimal places	Place value charts to 10 million and three decimal places
Interlocking cubes - Use one colour to represent one amount	Interlocking cubes Use one colour to represent one amount	Base 10				
			Place value counters	Place value counters	Place value counters	Place value counters
	Place value arrow cards - tens and ones	Place value arrow cards - tens and ones	Place value arrow cards - H, T, O	Place value arrow cards - Th, H, T, O	Place value arrow cards	Place value arrow cards
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole model	Part-part-whole model	Part-part-whole model	Part-part-whole model
Bar model with reallife objects	Bar model with real life objects/pictorial objects/representative objects eg. counters	Bar model with counters /Base 10 progressing to numbers	Bar model with numbers			
Bead strings - ten	Bead strings - twenty	Bead strings - hundred				
Numicon shapes						
			Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods
Double sided counters Double sided counters Double sided counters			Double sided counters	Double sided counters Double sided counters Double sided counters		
Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount	Multilink - use one colour to model an amount

Bartons Primary School

Maths Working Wall - DISPLAY IT!

Build it!	Use a real-life representation of the concept which children can see, touch and feel.	
Draw it!	Show a pictorial representation of the concept.	
Solve it!	Show the mathematical representation of the concept.	$\begin{aligned} & 6 \times 2=12 \\ & 2 \times 6=12 \\ & 12 \div 2=6 \\ & 12 \div 6=2 \end{aligned}$ Factors of 12 are: 1, 2, 3, 4, 6 and 12
Practise it!	Encourage children to practice the concept. Interactive opportunity - ask children to respond to questions, encourage them to add what they know, leave homework for children to take to master the concept.	$\begin{aligned} & 1 \times 2=2 \\ & 2 \times 2=4 \\ & 3 \times 2=6 \mathrm{etc} . \end{aligned}$
Challenge It!	Set a challenge to be solved. Interactive opportunity - leave real-life objects or manipulatives for children to use to help solve the challenge.	How many different ways can 12 eggs be arranged into arrays? What if you try 24 eggs?
Say it!	Use vocabulary related to the concept	Multiply, times, repeated addition, array, divide, group, multiples, factors

Bartons Primary School

Classroom Visual Prompts - SEE IT!

Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Big focus 10	Big focus 20	Big focus 100				
Numicon number line with Numicon shapes	Numicon number line with Numicon shapes	Numicon number line	Fractions number line	Fractions and decimals number line	Fractions, decimals and percentages number line	Fractions, decimals and percentages number line
	Odd and even numbers	Odd and even numbers			Prime, square and cube numbers	Prime, square and cube numbers
	Number pairs totalling 10 Number pairs totalling 20	Number pairs totalling 10 Multiples of 10 totalling 100	Number pairs totalling 10 Multiples of 10 totalling 100			
$0-10 \text { number line / }$ track	0-20 number line	0-100 number line	Number line to 100	Number line including negative numbers	Number line including negative numbers	Number line including negative numbers
	100 square	100 square	100 square	100 square		
Number names from 0 -10	Number names from 0 -20	Number names from 0 -100	Number names from 0 -1000	Number names to one million	Number names to one trillion	Number names to one trillion
Real coins Large coins	Real coins Large coins	Real coins Large coins	Real coins Large coins			
	$1,2,5$ and 10 times tables	2, 3, 4, 5 and 10 times tables	All times tables up to 12×12	All times tables up to 12×12	All times tables up to 12×12	All times tables up to 12×12
			Roman numerals	Roman numerals	Roman numerals	Roman numerals
		<, > and = signs				
Real-life / pictorial fractions	Real-life / pictorial fractions	Fractions including fraction number line/wall	Fractions including fraction number line/wall	Fractions including fraction number line/wall	Fractions, decimals and percentages including fraction number line/wall	Fractions, decimals and percentages including fraction number line/wall
						BODMAS
2d and 3d shapes						

Bartons Primary School

Progression in the teaching of counting in Foundation Stage

Pre-counting

The key focus in pre-counting is an understanding of the concepts more, less and the same and an appreciation of how these are related. Children at this stage develop these concepts by comparison and no counting is involved.

Ordering

Count by reciting the number names in order forwards and backwards from any starting point.

One to one correspondence

One number word has to be matched to each and every object.
Lack of coordination is a source of potential error - it helps if children move the objects as they count, use large rhythmic movements, or clap as they count.

One to one correspondence ideas

Play counting games together moving along a track, play games involving amounts such as knocking down skittles.

Use traditional counting songs throughout the day ensuring children have the visual/kinaesthetic resources eg. 5 little ducks, 10 green bottles

Ordering ideas

Provide children with opportunities to count orally on a daily basis. Rote count so that children are able to understand number order and can hear the rhythm and pattern. Use a drum or clap to keep the beat.

Cardinality (Knowing the final number counted is the total number of objects)

Count out a number of objects from a larger collection. Know the number they stop counting at will give the total number of objects.

Pre-counting ideas

Provide children with opportunities to sort groups of objects explicitly using the language of more and less.

Which group of apples has the most? Which group of apples has the least?

Bartons Primary School

Progression in the teaching of counting in Foundation Stage

Subitising (recognise small numbers

 without counting them)Children need to recognise small amounts without counting them eg. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small groups of randomly arranged shapes stuck on cards.

Subitising ideas

Provide children with opportunities to count by recognising amounts.

Abstraction

You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch (they are at a distance), see, that move around. Children also find it difficult to count a mix of different objects, or similar objects of very different sizes.

Conservation of number - M ASTERY!

Ultimately children need to realise that when objects are rearranged the number of them stays the same.

Abstraction ideas

How many pigs are in this picture?

Provide children with a variety of objects to count.

Conservation of Number

- The amount is "seven" and doesn't change.

End of year counting expectations

$\square \quad$ count reliably to 20
\square count reliably up to 10 everyday objects
\square estimate a number of objects then check by counting
\square use ordinal numbers in context eg first, second, third
\square count in twos, fives and tens
\square order numbers 1-20
\square say 1 more/ 1 less than a given number to 20

Bartons Primary School

Progression in the teaching of place value

Foundation	Year 1	Year 2	Year 3 onwards
Understanding ten	Understanding numbers up to 20	Understanding numbers up to one hundred	Understanding numbers up to one thousand
A TENS FRAME is a simple maths tool that helps children: Keep track of counting See number relationships Learn addition to 10 Understand place value	'Ten' is the building block of our Base 10 numeration system. Young children can usually 'read' two-digit numbers long before they understand the effect the placement of each digit has on its numerical value. A child might be able to correctly read 62 as sixty-	Continue developing place value through the use of tens frames.	Continue developing place value through the use of manipulatives.
children recognise amounts.	understanding why the numbers are of differing values.	20	
Use empty tens frames to fill with counters to enable children to understand number relationships. Either fill the tens frame in pairs or in rows. In rows shows 5 as a benchmark. Children can easily see more than 5 or less.	Ten-frames can provide a first step into understanding two-digit numbers simply by the introduction of a second frame. Placing the second frame to the right of the first frame, and later introducing numeral cards, will further assist the development of place-		
	value understanding.		1
Setting the counters in pairs, naturally allows the children to see addition concepts. Include other visual images such as dice, cards, dominoes etc.	\square 4		Use Dienes blocks and place value charts Hundreds Tens Ones

Bartons Primary School

Progression in the teaching of place value

Bartons Primary School

Progression in the teaching of calculations

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Column method - no regrouping.	Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimalswith different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back Find the difference Part whole model Make 10 Column method- no regrouping	Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimalswith different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder Short division (2 digits by 1 digit- concrete and pictorial)	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digitconcrete and pictorial)	Short division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit number- interpret remainders as whole numbers, fractions or round)

Bartons Primary School

Progression in the teaching of calculations

Objective and
 strategies

Concrete
 BUILD IT/ USE IT!

Pictorial
 DRAW IT!

Abstract SOLVE IT!

Combine two parts to make a whole model.

Part-part-whole model

Bartons Primary School

Progression in Calculations Policy

Progression in Calculations Policy		
Objective and Concrete strategies BUILD IT/ USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
Taking away ones Use real-life physical objects, counters, cubes etc. to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $5-2=3$	$\begin{aligned} & 4=6-2 \\ & 18-3=15 \\ & 8-2=6 \end{aligned}$
	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4 What number are you at? Use your fingers to help.

Make the larger number with the Dienes or place value counters. Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.

Now I can subtract my ones.

s , can I take away 8 tens easily? I need to exchange one hundred for ten tens.

Now I can take away eight tens and complete my subtraction

Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.

Draw the counters onto a place value grid and show what has been taken away by crossing the counters out as well as clearly showing the exchanges made.

When confident, children can find their own way to record the exchange/regrouping.

```
836-254=582
```



```
200 50 4
500 80 2
```

Children can start their formal written method by partitioning the number into clear place value columns.

Moving forward the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

	5	12		1
2	6	3		0
-	2	6	.	5
2	3	6	.	5

Bartons Primary school

Progression in Calculations Policy

Objective and strategies	Concrete BUILD IT/ USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
Doubling Double five is ten.	Use practical activities to show how to double a number. $5 \times 2=10$	Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square \square \square \square	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 $5,10,15,20,25,30$

Repeated addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Grid Method
Show the link with arrays to first introduce the grid method.

4 rows
of 104
rows of 3

Use Dienes to move towards a more compact method.

Use place value counters to show finding groups of a number eg. multiplying by 4 so we need 4 rows.

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

x	30	5
7	210	35

$210+35=245$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

Bartons Primary School

Progression in Calculations Policy

Objective and Concrete strategies BUILD IT/ USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
	Children use pictures or shapes to share quantities. $8 \div 2=4$	One half of 14 is 7 $1 / 2$ of $14=7$ $14 \div 2=7$ Share 9 cakes between three people. $9 \div 3=3$
Division as grouping\quadDivide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. \square $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Process of teaching times tables

Children need to rehearse counting regularly in order that they MASTER the number system.
Remember to count forwards and backwards orally and in written form.
Count from any number.
Ensure pronunciation of numbers is correct.
COUNTING IDEAS

Counting ladder - draw a ladder. Put starter number in the middle. Count forwards up the ladder and backwards down the ladder.	Chanting	Pass the parcel (wrap up numbers, predict next number)	
Count in a sequence	Pendulum counting - multilink cube on a string	Speed counting	Mixed sequences eg +10, +1, -2 or missing number sequences
How many beats? Teacher beats wood block. Children count how many times in their head. Record. Each beat could represent an amount.	Action counting	Estimate and count When counting estimated objects, place the objects in rows of 10.	What am I counting in? Teacher counts, children work out rule. Can they then continue the pattern?
Counting stick (attached numbers then remove)	Count to the beat of the drum	Eyes closed counting game -blindfold one child, point to others who stand and say their name. Blindfolded child counts.	Play counting tennis eg count in steps, teacher says 5, children say 10 (mime using racket)
Fizz buzz	Count coins in a pot, drop in one by one	Count using constant function on calculator	
Lead the counting into calculation so the children see the link, for example, if counting in twos, calculate using repeated addition, multiplication - include inverse operations etc.	number of sides using 3 times table		

DIFFERENTWAYS OF COUNTING
\(\left.\begin{array}{|l|l|l|l|l|}\hline Single steps \& Multiples \& \begin{array}{l}Use a rule

eg 10+1-3\end{array} \& Milliitres/litres \& Centimetres/metres\end{array}\right]\) Decimals | Money |
| :--- |
| Fractions |
| Units of time |
| Grams/kilograms |

VISUAL AIDS FOR COUNTING

Number line	100 square	Counting beads	Bead frame	Objects
Number snake	Number tiles	Pocket number line	Real money, large money or magnetic money	Shapes eg count sides
Counting stick	Whiteboards making own visual prompt	Objects (real life)	Base 10 Hundreds, tens, units	Groups of straws
Real life packaging showing arrays eg egg boxes, biscuit packets	Wrapping paper, wall paper etc. to count number of shapes	Number track	Counting bead string	Tape measure or metre stick
Clocks	Measuring jugs	Thermometer	Bead frame/abacus	Calculator
Pictures	Fingers	Interactive whiteboard	Multilink/buttons etc.	Number cards

REHEARSE IT!

Rehearsing old skills:

Children need to rehearse skills already taught to lead them to MASTERY.

The objectives will depend on your year group; however, it is important to keep old skills alive.
Remember to present the old skills in a variety of ways eg. Venn diagrams, Carroll diagrams, pictograms, tables, <and>signs, missing information, etc.

REASON IT!

There is a huge emphasis on reasoning in maths lessons. Children need opportunities to justify and explain their knowledge.
Ensure you are using:
NCETM reasoning questions
NCETM mastery documents
NRICH tasks

Odd one out	Would you rather have ... ?	Find the mistake.	What is the same and what is different?
True or false?	Here is the answer, explain how it was worked out.	Always, sometimes, never	Give me a silly answer to this problem. What makes it silly?
Tell me about this...	Prove/disprove this statement.	Convince me that ...	What if....?
Give me a hard and easy example of a calculation you could do with these numbers. Give me a hard and easy example of a five-digit calculation. Give me a hard and easy example of a question you could ask about this graph/pie chart etc.	What do you notice?	How are these linked?	If you know this fact, what else do you know? Eg. If you know: $4+6=10$ You know: $\begin{aligned} & 40+60=100 \\ & 100-40=60 \end{aligned}$ The sum of 6 and 4 is 10 . $\begin{aligned} & 4000+6000=10,000 \\ & 100,000-60,000=40,000 \end{aligned}$ If it is 6 o'clock now, in 4 hours it will be 10 o'clock.

RECALLIT!

Rapid recalling of key facts is important in developing fluency and MASTERY.
As children recall facts, deepen their knowledge by reasoning in context eg. When recalling number, bonds totalling 100: 'tell me two lengths that together make one metre.'

Recall number bonds	Recall addition / subtraction facts	Recall multiplication / division facts	Recall fraction, decimal, percentage equivalents
Recall shape names and properties	Recall time related facts	Recall measurement facts	

SAY IT!

Build mathematical vocabulary into every lesson.
Encourage children to speak in full sentences when giving responses. 'I think... because...'

Taboo - describe this word without saying it	How many words can you link to this word?	Match the word and its meaning.	Use a picture. How many mathematical words can you use?
Which of these words is the odd one out?	Write the definition of this word for someone who does not understand what it means.	Which word do these words link to? many times in the day as possible (in context of course!)	
Can you say a sentence which links these two words?	Tell me everything you can about this word.	Can you draw a picture to explain this word?	Hangman

